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Abstract

A general model of decentralized stochastic control called partial history sharing information structure

is presented. In this model, at each step the controllers share part of their observation and control history

with each other. This general model subsumes several existing models of information sharing as special

cases. Based on the information commonly known to all the controllers, the decentralized problem is

reformulated as an equivalent centralized problem from the perspective of a coordinator. The coordinator

knows the common information and select prescriptions that map each controller’s local information to

its control actions. The optimal control problem at the coordinator is shown to be a partially observable

Markov decision process (POMDP) which is solved using techniques from Markov decision theory. This

approach provides (a) structural results for optimal strategies, and (b) a dynamic program for obtaining

optimal strategies for all controllers in the original decentralized problem. Thus, this approach unifies the

various ad-hoc approaches taken in the literature. In addition, the structural results on optimal control

strategies obtained by the proposed approach cannot be obtained by the existing generic approach (the

person-by-person approach) for obtaining structural results in decentralized problems; and the dynamic

program obtained by the proposed approach is simpler than that obtained by the existing generic approach

(the designer’s approach) for obtaining dynamic programs in decentralized problems.

Index Terms

Decentralized Control, Stochastic Control, Information Structures, Markov Decision Theory, Team

Theory

I. INTRODUCTION

Stochastic control theory provides analytic and computational techniques for centralized

decision making in stochastic systems with noisy observations. For specific models such as

Markov decision processes and linear quadratic and Gaussian systems, stochastic control gives

Preliminary version of this paper appeared in the proceedings of the 46th Allerton conference on communication, control, and

computation, 2008 (see [1]).
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results that are intuitively appealing and computationally tractable. However, these results are

derived under the assumption that all decisions are made by a centralized decision maker who

sees all observations and perfectly recalls past observations and actions. This assumption of

a centralized decision maker is not true in a number of modern control applications such as

networked control systems, communication and queuing networks, sensor networks, and smart

grids. In such applications, decisions are made by multiple decision makers who have access

to different information. In this paper, we investigate such problems of decentralized stochastic

control.

The techniques from centralized stochastic control cannot be directly applied to decentralized

control problems. Nonetheless, two general solution approaches that indirectly use techniques

from centralized stochastic control have been used in the literature: (i) the person-by-person

approach which takes the viewpoint of an individual decision maker (DM); and (ii) the designer’s

approach which takes the viewpoint of the collective team of DMs.

The person-by-person approach investigates the decentralized control problem from the

viewpoint of one DM, say DM i and proceeds as follows: (i) arbitrarily fix the strategy of

all DMs except DM i; and (ii) use centralized stochastic control to derive structural properties

for the optimal best-response strategy of DM i. If such a structural property does not depend on

the choice of the strategy of other DMs, then it also holds for globally optimal strategy of DM i.

By cyclically using this approach for all DMs, we can identify the structure of globally optimal

strategies for all DMs.

A variation of this approach may be used to identify person-by-person optimal strategies. The

variation proceeds iteratively as follows. Start with an initial guess for the strategies of all DMs.

At each iteration, select one DM (say DM i), and change its strategy to the best response strategy

given the strategy of all other DMs. Repeat the process until a fixed point is reached, i.e., when

no DM can improve performance by unilaterally changing its strategy. The resulting strategies

are person-by-person optimal [2], and in general, not globally optimal.

In summary, the person-by-person approach identifies structural properties of globally optimal

strategies and provides an iterative method to obtain person-by-person optimal strategies. This

method has been successfully used to identify structural properties of globally optimal strategies

for various applications including real-time communication [3]–[7], decentralized hypothesis

testing and quickest change detection [8]–[16], and networked control systems [17]–[19]. Under
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certain conditions, the person-by-person optimal strategies found by this approach are globally

optimal [2], [20], [21].

The designer’s approach, which is developed in [22], [23], investigates the decentralized

control problem from the viewpoint of the collective team of DMs or, equivalently, from the

viewpoint of a system designer who knows the system model and probability distribution of the

primitive random variables and chooses control strategies for all DMs. Effectively, the designer is

solving a centralized planning problem. The designer’s approach proceeds by: (i) modeling this

centralized planning problem as a multi-stage, open-loop stochastic control problem in which

the designer’s decision at each time is the control law for that time for all DMs; and (ii) using

centralized stochastic control to obtain a dynamic programming decomposition. Each step of

the resulting dynamic program is a functional optimization problem (in contrast to centralized

dynamic programming where each step is a parameter optimization problem).

The designer approach is often used in tandem with the person-by-person approach as follows.

First, the person-by-person approach is used to identify structural properties of globally optimal

strategies. Then, restricting attention to strategies with the identified structural property, the

designer’s approach is used to obtain a dynamic programming decomposition for selecting the

globally optimal strategy. Such a tandem approach has been used in various applications including

real-time communication [4], [24], [25], decentralized hypothesis testing [13], and networked

control systems [17], [18].

In addition to the above general approaches, other specialized approaches have been developed

to address specific problems in decentralized systems. Decentralized problems with partially

nested information structure were defined and studied in [26]. Decentralized linear quadratic

Gaussian (LQG) control problems with two controllers and partially nested information structure

were studied in [27], [28]. Partially nested decentralized LQG problems with controllers connected

via a graph were studied in [29], [30]. A generalization of partial nestedness called stochastic

nestedness was defined and studied in [31]. An important property of LQG control problems

with partially nested information structure is that there exists an affine control strategy which is

globally optimal. In general, the problem of finding the best affine control strategies may not

be a convex optimization problem. Conditions under which the problem of determining optimal

control strategies within the class of affine control strategies becomes a convex optimization

problem were identified in [32], [33].
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Decentralized stochastic control problems with specific models of information sharing among

controllers have also been studied in the literature. Examples include systems with delayed

sharing information structures [34]–[36], systems with periodic sharing information structure [37],

control sharing information structure [38], [39], systems with broadcast information structure [19],

and systems with common and private observations [1].

In this paper, we present a new general model of decentralized stochastic control called partial

history sharing information structure. In this model, we assume that: (i) controllers sequentially

share part of their past data (past observations and control) with each other by means of a

shared memory; and (ii) all controllers have perfect recall of commonly available data (common

information). This model subsumes a large class of decentralized control models in which

information is shared among the controllers.

For this model, we present a general solution methodology that reformulates the original

decentralized problem into an equivalent centralized problem from the perspective of a coordinator.

The coordinator knows the common information and selects prescriptions that map each controller’s

local information to its control actions. The optimal control problem at the coordinator is shown

to be a partially observable Markov decision process (POMDP) which is solved using techniques

from Markov decision theory. This approach provides (a) structural results for optimal strategies,

and (b) a dynamic program for obtaining optimal strategies for all controllers in the original

decentralized problem. Thus, this approach unifies the various ad-hoc approaches taken in the

literature.

A similar solution approach is used in [36] for a model that is a special case of the model

presented in this paper. We present an information state (Eq. (51)) for the model of [36] that is

simpler than that presented in [36, Theorem 2]. A preliminary version of the general solution

approach presented here was presented in [1] for a model that had features (e.g., direct but

noisy communication links between controllers) that are not necessary for partial history sharing.

However, it can be shown that by suitable redefinition of variables, the model in [1] can be recast

as an instance of the model in this paper and vice versa (see Appendix C). The information state

for partial history sharing that is presented in this paper (see Thereom 4) is simpler than that

presented in [1, Eq. (39)].
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A. Common Information Approach for a Static Team Problem

We first illustrate how common information can be used in a static team problem with two

controllers. Let X denote the state of nature and Y ∗, Y 1, Y 2 be three correlated random variables

that depend on X . Assume that the joint distribution of (X, Y ∗, Y 1, Y 2) is given.

Controller i, i = 1, 2, observes (Y ∗, Y i) and chooses a control action U i = gi(Y ∗, Y i). The

system incurs a cost l(X,U1, U2). The control objective is to choose (g1, g2) to minimize

J(g1, g2) := E(g1,g2)[l(X,U1, U2)]

If all the system variables are finite valued, we can solve the above optimization problem by

a brute force search over all control strategies (g1, g2). For example, if all variables are binary

valued, we need to compute the performance of 24 × 24 = 256 control strategies and choose the

one with the best performance.

In this example, both controllers have a common observation Y ∗. One of the main ideas of this

paper is to use such common information among the controllers to simplify the search process as

follows. Instead of specifying the control strategies (g1, g2) directly, we consider a coordinated

system in which a coordinator observes the common information Y ∗ and chooses prescriptions

(Γ1,Γ2) where Γi is a mapping from Y i to U i, i = 1, 2. Hence, (Γ1,Γ2) = d(Y ∗), where d is

called the coordination strategy. The coordinator then communicates these prescriptions to the

controllers who simply use them to choose U i = Γi(Y i), i = 1, 2.

It is easy to verify (see Proposition 3 for a formal proof) that choosing the control strategies

(g1, g2) in the original system is equivalent to choosing a coordination strategy d in the coordinated

system. The problem of choosing the best coordination strategy, however, is a centralized problem

in which the coordinator is the only decision-maker.

For example, consider the case when all system variables are binary valued. For any coordination

strategy d, let (γ10 , γ
2
0) = d(0) and (γ11 , γ

2
1) = d(1). Then, the cost associated with this coordination

strategy is given as:

J(d) := E(d)[l(X,U1, U2)] = P(Y ∗ = 0)E[l(X, γ10(Y 1), γ20(Y 2))|Y ∗ = 0]

+ P(Y ∗ = 1)E[l(X, γ11(Y 1), γ21(Y 2))|Y ∗ = 1]

To minimize the above cost, we can minimize the two terms separately. Therefore, to find the best

coordination strategy d, we can search for optimal prescriptions for the cases Y ∗ = 0 and Y ∗ = 1
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separately. Searching for the best prescriptions for each of these cases involves computing the

performance of 22 × 22 = 16 prescription pairs and choosing the one with the best performance.

Thus, to find the best coordination strategy, we need to evaluate the performance of 16 + 16 = 32

prescription pairs. Contrast this with the 256 strategies whose costs we need to evaluate to solve

the original problem by brute force.

The above example described a static system and illustrates that common information can

be exploited to convert the decentralized optimization problem into a centralized optimization

problem involving a coordinator. In this paper, we build upon this basic idea and present a solution

approach based on common information that works for dynamical decentralized systems as well.

Our approach converts the decentralized problem into a centralized stochastic control problem (in

particular, a partially observable Markov decision process), identifies structure of optimal control

strategies, and provides a dynamic program like decomposition for the decentralized problem.

B. Contributions of the Paper

We introduce a general model of decentralized stochastic control problem in which multiple

controllers share part of their information with each other. We call this model the partial history

sharing information structure. This model subsumes several existing models of information

sharing in decentralized stochastic control as special cases (see Section II-B). We establish two

results for our model. Firstly, we establish a structural property of optimal control strategies.

Secondly, we provide a dynamic programming decomposition of the problem of finding optimal

control strategies. As in [1], [36], our results are derived using a common information based

approach (see Section III). This approach differs from the person-by-person approach and the

designer’s approach mentioned earlier. In particular, the structural properties found in this paper

cannot be found by the person-by-person approach described earlier. Moreover, the dynamic

programming decomposition found in this paper is distinct from —and simpler than— the

dynamic programming decomposition based on the designer’s approach. For a general framework

for using common information in sequential decision making problems, see [40].

C. Notation

Random variables are denoted by upper case letters; their realization by the corresponding lower

case letter. For integers a ≤ b and c ≤ d, Xa:b is a short hand for the vector (Xa, Xa+1, . . . , Xb)
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while Xc:d is a short hand for the vector (Xc, Xc+1, . . . , Xd). When a > b, Xa:b equals the

empty set. The combined notation Xc:d
a:b is a short hand for the vector (Xj

i : i = a, a+ 1, . . . , b,

j = c, c + 1, . . . , d). In general, subscripts are used as time index while superscripts are used

to index controllers. Bold letters X are used as a short hand for the vector (X1:n). P(·) is the

probability of an event, E(·) is the expectation of a random variable. For a collection of functions

g, we use Pg(·) and Eg(·) to denote that the probability measure/expectation depends on the

choice of functions in g. 1A(·) is the indicator function of a set A. For singleton sets {a}, we

also denote 1{a}(·) by 1a(·).

For a singleton a and a set B, {a,B} denotes the set {a} ∪B. For two sets A and B, {A,B}

denotes the set A ∪B. For two finite sets A,B, F (A,B) is the set of all functions from A to

B. Also, if A = ∅, F (A,B) := B. For a finite set A, ∆(A) is the set of all probability mass

functions over A. For the ease of exposition, we assume that all state, observation and control

variables take values in finite sets.

For two random variables (or random vectors) X and Y taking values in X and Y , P(X = x|Y )

denotes the conditional probability of the event {X = x} given Y and P(X|Y ) denotes the

conditional PMF (probability mass function) of X given Y , that is, it denotes the collection of

conditional probabilities P(X = x|Y ), x ∈ X . Finally, all equalities involving random variables

are to be interpreted as almost sure equalities (that is, they hold with probability one).

D. Organization

The rest of this paper is organized as follows. We present our model of a decentralized

stochastic control problem in Section II. We also present several special cases of our model in

this section. We prove our main results in Section III. We apply our result to some special cases

in Section III-B. We present a simplification of our result and a generalization of our model in

Section IV. We consider the infinite time-horizon discounted cost analogue of our problem in

Section V. Finally, we conclude in Section VI.

II. PROBLEM FORMULATION

A. Basic model: Partial History Sharing Information Structure

1) The Dynamic System: Consider a dynamic system with n controllers. The system operates

in discrete time for a horizon T . Let Xt ∈ Xt denote the state of the system at time t, U i
t ∈ U it
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denote the control action of controller i, i = 1, . . . , n at time t, and Ut denote the vector

(U1
t , . . . , U

n
t ).

The initial state X1 has a probability distribution Q1 and evolves according to

Xt+1 = ft(Xt,Ut,W
0
t ), (1)

where {W 0
t }Tt=1 is a sequence of i.i.d. random variables with probability distribution Q0

W .

2) Data available at the controller: At any time t, each controller has access to three types

of data: current observation, local memory, and shared memory.

(i) Current local observation: Each controller makes a local observation Y i
t ∈ Y it on the state

of the system at time t,

Y i
t = hit(Xt,W

i
t ), (2)

where {W i
t }Tt=1 is a sequence of i.i.d. random variables with probability distribution Qi

W . We

assume that the random variables in the collection {X1,W
j
t , t = 1, . . . , T, j = 0, 1, . . . , n},

called primitive random variables, are mutually independent.

(ii) Local memory : Each controller stores a subset M i
t of its past local observations and its

past actions in a local memory:

M i
t ⊂ {Y i

1:t−1, U
i
1:t−1}. (3)

At t = 1, the local memory is empty, M i
1 = ∅.

(iii) Shared memory: In addition to its local memory, each controller has access to a shared

memory. The contents Ct of the shared memory at time t are a subset of the past local

observations and control actions of all controllers:

Ct ⊂ {Y1:t−1,U1:t−1} (4)

where Yt and Ut denote the vectors (Y 1
t , . . . , Y

n
t ) and (U1

t , . . . , U
n
t ) respectively. At t = 1,

the shared memory is empty, C1 = ∅.

Controller i chooses action U i
t as a function of the total data (Y i

t ,M
i
t , Ct) available to it.

Specifically, for every controller i, i = 1, . . . , n,

U i
t = git(Y

i
t ,M

i
t , Ct), (5)

where git is called the control law of controller i. The collection gi = (gi1, . . . , g
i
T ) is called the

control strategy of controller i. The collection g1:n = (g1, . . . ,gn) is called the control strategy

of the system.
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3) Update of local and shared memories:

(i) Shared memory update: After taking the control action at time t, the local information

at controller i consists of the contents M i
t of its local memory, its local observation

Y i
t and its control action U i

t . Controller i sends a subset Zi
t of this local information

{M i
t , Y

i
t , U

i
t} to the shared memory. The subset Zi

t is chosen according to a pre-specified

protocol. The contents of shared memory are nested in time, that is, the contents Ct+1 of

the shared memory at time t + 1 are the contents Ct at time t augmented with the new

data Zt = (Z1
t , Z

2
t , . . . , Z

n
t ) sent by all the controllers at time t:

Ct+1 = {Ct,Zt}. (6)

(ii) Local memory update: After taking the control action and sending data to the shared memory

at time t, controller i updates its local memory according to a pre-specified protocol. The

content M i
t+1 of the local memory can at most equal the total local information {M i

t , Y
i
t , U

i
t}

at the controller. However, to ensure that the local and shared memories at time t+ 1 don’t

overlap, we assume that

M i
t+1 ⊂ {M i

t , Y
i
t , U

i
t} \ Zi

t . (7)

Figure 1 shows the time order of observations, actions and memory updates. We refer to the

Ct Ct+1Zt

Mn
t Y n

t Un
t Zn

t
Mn

t+1

t t+ 1

Shared Memory

Controller 1

Controller n

M1
t Y 1

t U1
t Z1

t M1
t+1

Fig. 1. Time ordering of Observations, Actions and Memory Updates

above model as the partial history sharing information structure.

4) The optimization problem: At time t, the system incurs a cost l(Xt,Ut). The performance

of the control strategy of the system is measured by the expected total cost

J(g1:n) := Eg1:n
[ T∑
t=1

l(Xt,Ut)
]
, (8)
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where the expectation is with respect to the joint probability measure on (X1:T ,U1:T ) induced

by the choice of g1:n.

We are interested in the following optimization problem.

Problem 1 For the model described above, given the state evolution functions ft, the observation

functions hit, the protocols for updating local and share memory, the cost function l, the

distributions Q1, Qi
W , i = 0, 1, . . . , n, and the horizon T , find a control strategy g1:n for

the system that minimizes the expected total cost given by (8).

B. Special Cases: The Models

In the above model, although we have not specified the exact protocols by which controllers

update the local and shared memories, we assume that pre-specified protocols are being used.

Different choices of this protocol result in different information structures for the system. In

this section, we describe several models of decentralized control systems that can be viewed

as special cases of our model by assuming a particular choice of protocol for local and shared

memory updates.

1) Delayed Sharing Information Structure: Consider the following special case of the model

of Section II-A.

(i) The shared memory at the beginning of time t is Ct = {Y1:t−s,U1:t−s}, where s ≥ 1 is a

fixed number. The local memory at the beginning of time t is M i
t = {Y i

t−s+1:t−1, U
i
t−s+1:t−1}.

(ii) At each time t, after taking the action U i
t , controller i sends Zi

t = {Y i
t−s+1, U

i
t−s+1} to the

shared memory and the shared memory at t+ 1 becomes Ct+1 = {Y1:t−s+1,U1:t−s+1}.

(iii) After sending Zi
t = {Y i

t−s+1, U
i
t−s+1} to the shared memory, controller i updates the local

memory to M i
t+1 = {Y i

t−s+2:t, U
i
t−s+2:t}.

In this spacial case, the observations and control actions of each controller are shared with

every other controller after a delay of s time steps. Hence, the above special case corresponds to

the delayed sharing information structure considered in [34], [36], [41].

2) Delayed State Sharing Information Structure: A special case of the delayed sharing

information structure (which itself is a special case of our basic model) is the delayed state

sharing information structure [35]. This information structure can be obtained from the delayed

sharing information structure by making the following assumptions:
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(i) The state of the system at time t is a n-dimensional vector Xt = (X1
t , X

2
t , . . . , X

n
t ).

(ii) At each time t, the current local observation of controller i is Y i
t = X i

t , for i = 1, 2, . . . , n.

In this spacial case, the complete state vector Xt is available to all controllers after a delay of s

time steps.

3) Periodic Sharing Information Structure: Consider the following special case of the model

of Section II-A where controllers update the shared memory periodically with period s ≥ 1:

(i) For time ks < t ≤ (k + 1)s, where k = 0, 1, 2, . . ., the shared memory at the beginning

of time t is Ct = {Y1:ks,U1:ks}. The local memory at the beginning of time t is M i
t =

{Y i
ks+1:t−1, U

i
ks+1:t−1}.

(ii) At each time t = (k + 1)s, k = 1, 2, . . . , after taking the action U i
t , controller i sends

Zi
t = {Y i

ks+1:(k+1)s, U
i
ks+1:(k+1)s} to the shared memory. At other times, each controller

does not send anything (thus Zi
t = ∅).

(iii) After sending Zi
t to the shared memory, controller i updates the local memory to M i

t+1 =

{M i
t , Y

i
t , U

i
t} \ Zi

t .

In this spacial case, the entire history of observations and control actions are shared periodically

between controllers with period s. Hence, the above special case corresponds to the periodic

sharing information structure considered in [37].

4) Control Sharing Information Structure: Consider the following special case of the model

of Section II-A.

(i) The shared memory at the beginning of time t is Ct = {U1:t−1}. The local memory at the

beginning of time t is M i
t = {Y i

1:t−1}.

(ii) At each time t, after taking the action U i
t , controller i sends Zi

t = {U i
t} to the shared

memory.

(iii) After sending Zi
t = U i

t to the shared memory, controller i updates the local memory to

M i
t+1 = Y i

1:t.

In this spacial case, the control actions of each controller are shared with every other controller

after a delay of 1 time step. Hence, the above special case corresponds to the control sharing

information structure considered in [38].

5) No Shared Memory with or without finite local memory: Consider the following special

case of the model of Section II-A.
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(i) The shared memory at each time is empty, Ct = ∅ and the local memory at the beginning

of time t is M i
t = {Y i

t−s:t−1, U
i
t−s:t−1}, where s ≥ 1 is a fixed number.

(ii) Controllers do not send any data to shared memory, Zi
t = ∅.

(iii) At the end of time t, controllers update their local memories to M i
t+1 = {Y i

t−s+1:t, U
i
t−s+1:t}.

In this special case, the controllers don’t share any data. The above model is related to the

finite-memory controller model of [42]. A related special case is the situation where the local

memory at each controller consists of all of its past local observations and its past actions, that

is, M i
t = {Y i

1:t−1, U
i
1:t−1}.

Remark 1 All the special cases considered above are examples of symmetric sharing. That is,

different controllers update their local memories according to identical protocols and the data sent

by a controller to the shared memory is selected according to identical protocols. However, this

symmetry is not required for our model. Consider for example, the delayed sharing information

structure where at the end of time t, controller i sends Y i
t−si , U

i
t−si to the shared memory, with

si, i = 1, 2, . . . , n, being fixed, but not necessarily identical, numbers. This kind of asymmetric

sharing is also a special case of our model. 2

III. MAIN RESULTS

For centralized systems, stochastic control theory provides two important analytical results.

Firstly, it provides a structural result. This result states that there is an optimal control strategy

which selects control actions as a function only of the controller’s posterior belief on the state of

the system conditioned on all its observations and actions till the current time. The controller’s

posterior belief is called its information state. Secondly, stochastic control theory provides a

dynamic programming decomposition of the problem of finding optimal control strategies in

centralized systems. This dynamic programming decomposition allows one to evaluate the optimal

action for each realization of the controller’s information state in a backward inductive manner.

In this section, we provide a structural result and a dynamic programming decomposition for

the decentralized stochastic control problem with partial information sharing formulated above

(Problem 1). The main idea of the proof is to formulate an equivalent centralized stochastic

control problem; solve the equivalent problem using classical stochastic-control techniques; and

translate the results back to the basic model. For that matter, we proceed as follows:
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1) Formulate a centralized coordinated system from the point of view of a coordinator

that observes only the common information among the controllers in the basic model,

i.e., the coordinator observes the shared memory Ct but not the local memories (M i
t ,

i = 1, . . . , n) or local observations (Y i
t , i = 1, . . . , n). The coordinator chooses prescriptions

Γt = (Γ1
t , . . . ,Γ

n
t ), where Γit is a mapping from (Y i

t ,M
i
t ) to U i

t , i = 1, . . . , n.

2) Show that the coordinated system is a POMDP (partially observable Markov decision

process).

3) For the coordinated system, determine the structure of an optimal coordination strategy

and a dynamic program to find an optimal coordination strategy.

4) Show that any strategy of the coordinated system is implementable in the basic model with

the same value of the total expected cost. Conversely, any strategy of the basic model is

implementable in the coordinated system with the same value of the total expected cost.

Hence, the two systems are equivalent.

5) Translate the structural results and dynamic programming decomposition of the coordinated

system (obtained in stage 3) to the basic model.

Stage 1: The coordinated system

Consider a coordinated system that consists of a coordinator and n passive controllers. The

coordinator knows the shared memory Ct at time t, but not the local memories (M i
t , i = 1, . . . , n)

or local observations (Y i
t , i = 1, . . . , n). At each time t, the coordinator chooses mappings

Γit : Y it ×Mi
t 7→ U it , i = 1, 2, . . . , n, according to

Γt = dt(Ct,Γ1:t−1), (9)

where Γt = (Γ1
t ,Γ

2
t , . . . ,Γ

n
t ). The function dt is called the coordination rule at time t and the

collection of functions d := (d1, . . . , dT ) is called the coordination strategy. The selected Γit is

communicated to controller i at time t.

The function Γit tells controller i how to process its current local observation and its local

memory at time t; for that reason, we call Γit the coordinator’s prescription to controller i.

Controller i generates an action using its prescription as follows:

U i
t = Γit(Y

i
t ,M

i
t ). (10)
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For this coordinated system, the system dynamics, the observation model and the cost are the

same as the basic model of Section II-A: the system dynamics are given by (1), each controller’s

current observation is given by (2) and the instantaneous cost at time t is l(Xt,Ut). As before,

the performance of a coordination strategy is measured by the expected total cost

Ĵ(d) = E
[ T∑
t=1

l(Xt,Ut)
]
, (11)

where the expectation is with respect to a joint measure on (X1:T ,U1:T ) induced by the choice

of d.

In this coordinated system, we are interested in the following optimization problem:

Problem 2 For the model of the coordinated system described above, find a coordination strategy

d that minimizes the total expected cost given by (11).

Stage 2: The coordinated system as a POMDP

We will now show that the coordinated system is a partially observed Markov decision process.

For that matter, we first describe the model of POMDPs [43].

POMDP Model: A partially observable Markov decision process consists of a state process

St ∈ S , an observation process Ot ∈ O, an action process At ∈ A, t = 1, 2, . . . , T , and a single

decision-maker where

1) The action at time t is chosen by the decision-maker as a function of observation and

action history, that is,

At = dt(O1:t, A1:t−1), (12)

dt is the decision rule at time t.

2) After the action at time t is taken, the new state and new observation are generated according

to the transition probability rule

P(St+1, Ot+1|S1:t, O1:t, A1:t) = P(St+1, Ot+1|St, At). (13)

3) At each time, an instantaneous cost l̃(St, At) is incurred.

4) The optimization problem for the decision-maker is to choose a decision strategy d :=

(d1, . . . , dT ) to minimize a total cost given as

E[
T∑
t=1

l̃(St, At)]. (14)
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The following well-known results provides the structure of optimal strategies and a dynamic

program for POMDPs. For details, see [43].

Theorem 1 (POMDP Result) Let Θt be the conditional probability distribution of the state St

at time t given the observations O1:t and actions A1:t−1,

Θt(s) = P(St = s|O1:t, A1:t−1), s ∈ S.

Then,

1) Θt+1 = ηt(Θt, At, Ot+1), where ηt is the standard non-linear filter: If θt, at, ot+1 are the

realizations of Θt, At and Ot+1, then the realization of sth element of the vector Θt+1 is

θt+1(s) =

∑
s′ θt(s

′)P(St+1 = s,Ot+1 = ot+1|St = s′, At = at)∑
ŝ,s̃ θt(ŝ)P(St+1 = s̃, Ot+1 = ot+1|St = ŝ, At = at)

=: ηst (θt, at, ot+1) (15)

and ηt(θt, at, ot+1) is the vector (ηst (θt, at, ot+1))s∈S .

2) There exists an optimal decision strategy of the form

At = d̂t(Θt).
2

Further, such a strategy can be found by the following dynamic program:

VT (θ) = inf
a
E{l̃(ST , a)|ΘT = θ}, (16)

and for 1 ≤ t ≤ T − 1,

Vt(θ) = inf
a
E
{
l̃(St, a) + Vt+1(ηt(θ, a, Ot+1))

∣∣Θt = θ, At = a
}
. (17)

We will now show that the coordinated system can be viewed as an instance of the above

POMDP model by defining the state process as St := {Xt,Yt,Mt}, the observation process as

Ot := Zt−1, and the action process At := Γt.

Lemma 1 For the coordinated system of Problem 2,

1) There exist functions f̃t and h̃t, t = 1, . . . , T , such that

St+1 = f̃t(St,Γt,W
0
t ,Wt+1), (18)

and

Zt = h̃t(St,Γt). (19)
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In particular, we have that

P(St+1,Zt|S1:t,Z1:t−1,Γ1:t) = P(St+1,Zt|St,Γt). (20)

2) Furthermore, there exists a function l̃ such that

l(Xt,Ut) = l̃(St,Γt). (21)

Thus, the objective of minimizing (11) is same as minimizing

Ĵ(d) = E
[ T∑
t=1

l̃(St,Γt)
]
. (22)

Proof: The existence of f̃t follows from (1), (2), (10), (7) and the definition of St. The

existence of h̃t follows from the fact that Zi
t is a fixed subset of {M i

t , Y
i
t , U

i
t}, equation (10) and

the definition of St. Equation (20) follows from (18) and the independence of W 0
t ,Wt+1 from

all random variables in the conditioning in the left hand side of (20). The existence of l̃ follows

from the definition of St and (10).

Recall that the coordinator is choosing its actions according to a coordination strategy of the

form

Γt = dt(Ct,Γ1:t−1) = dt(Z1:t−1,Γ1:t−1). (23)

Equation (23) and Lemma 1 imply that the coordinated system is an instance of the POMDP

model described above.

Stage 3: Structural result and dynamic program for the coordinated system

Since the coordinated system is a POMDP, Theorem 1 gives the structure of the optimal

coordination strategies. For that matter, define coordinator’s information state

Πt := P(St | Z1:t−1,Γ1:t−1) = P(St | Ct,Γ1:t−1). (24)

Then, we have the following:

Proposition 1 For Problem 2, there is no loss of optimality in restricting attention to coordination

rules of the form

Γt = d̂t(Πt). (25)
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Furthermore, an optimal coordination strategy of the above form can be found using a dynamic

program. For that matter, observe that we can write

Πt+1 = ηt(Πt,Zt,Γt) (26)

where ηt is the standard non-linear filtering update function (see Appendix A). We denote by Bt
the space of possible realizations of Πt. Thus,

Bt := ∆(Xt × Y1
t ×M1

t × . . .× Ynt ×Mn
t ). (27)

Recall that F (Y it ×Mi
t,U it ) is the set of all functions from Y it ×Mi

t to U it (see Section I-C).

Then, we have the following result.

Proposition 2 For all πt in Bt, define

VT (π) = inf
{γ̃iT∈F (Yi

T×M
i
T ,U

i
T ),1≤i≤n}

E[l̃(St,ΓT ) | Πt = π,ΓT = (γ1T , . . . , γ
n
T )], (28)

and for 1 ≤ t ≤ T − 1,

Vt(π) = inf
{γ̃i∈F (Yi

t×Mi
t,Ui

t ),1≤i≤n}
E[l̃(St,Γt) + Vt+1(ηt(Πt,Γt,Zt) | Πt = π,Γt = (γ1t , . . . , γ

n
t )].

(29)

Then the arg inf at each time step gives the coordinator’s optimal prescriptions for the

controllers when the coordinator’s information state is π. 2

Proposition 2 gives a dynamic program for the coordinator’s problem (Problem 2). Since the

coordinated system is a POMDP, it implies that computational algorithms for POMDPs can be

used to solve the dynamic program for the coordinator’s problem as well. We refer the reader to

[44] and references therein for a review of algorithms to solve POMDPs.

Stage 4: Equivalence between the two models

We first observe that since Cs ⊂ Ct, for all s < t, under any given coordination strategy d, we

can use Ct to evaluate the past prescriptions by recursive substitution. For example, for t = 2, 3,

the past prescriptions can be evaluated as functions of C2, C3 as follows:

Γ1 = d1(C1) =: d̃1(C2),

Γ2 = d2(C2,Γ1) = d2(C2, d̃1(C2)) =: d̃2(C3)
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We can now state the following result.

Proposition 3 The basic model of Section II-A and the coordinated system are equivalent. More

precisely:

(a) Given any control strategy g1:n for the basic model, choose a coordination strategy d for

the coordinated system of stage 1 as

dt(Ct) =
(
g1t (·, ·, Ct), . . . , gnt (·, ·, Ct)

)
.

Then Ĵ(d) = J(g1:n).

(b) Conversely, for any coordination strategy for the coordinated system, choose a control

strategy g1:n for the basic model as

gi1(·, ·, C1) = di1(C1),

and

git(·, ·, Ct) = dit(Ct,Γ1:t−1),

where Γk = dk(Ck,Γ1:k−1), k = 1, 2, . . . , t−1 and dit(·) is the i-th component of dt(·) (that

is, dit(·) gives the coordinator’s prescription for the i-th controller). Then, J(g1:n) = Ĵ(d).2

Proof: See Appendix B.

Stage 5: Structural result and dynamic program for the basic model

Combining Proposition 1 with Proposition 3, we get the following structural result for Problem 1.

Theorem 2 (Structural Result for Optimal Control Strategies) In Problem 1, there exist op-

timal control strategies of the form

U i
t = ĝit(Y

i
t ,M

i
t ,Πt), i = 1, 2, . . . , n, (30)

where Πt is the conditional distribution on Xt,Yt,Mt given Ct, defined as

Πt(x,y,m) := Pĝ
1:n
1:t−1(Xt = x,Yt = y,Mt = m|Ct), (31)

for all possible realizations (x,y,m) of (Xt,Yt,Mt). 2

We call Πt the common information state. Recall that Πt takes values in the set Bt defined in

(27).
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Consider a control strategy ĝi for controller i of the form specified in Theorem 2. The control

law ĝit at time t is a function from the space Y it × Mi
t × Bt to the space of decisions U it .

Equivalently, the control law ĝit can be represented as a collection of functions {ĝit(·, ·, π)}π∈Bt ,

where each element of this collection is a function from Y it ×Mi
t to U it . An element ĝit(·, ·, π)

of this collection specifies a control action for each possible realization of Y i
t ,M

i
t and a fixed

realization π of Πt. We call ĝit(·, ·, π) the partial control law of controller i at time t for the

given realization π of the common information state Πt.

We now use Proposition 2 to describe a dynamic programming decomposition of the problem

of finding optimal control strategies. This dynamic programming decomposition allows us to

evaluate optimal partial control laws for each realization π of the common information state in a

backward inductive manner. Recall that Bt is the space of all possible realizations of Πt (see

(27)) and F (Y it ×Mi
t,U it ) is the set of all functions from Y it ×Mi

t to U it (see Section I-C).

Theorem 3 (Dynamic Programming Decomposition) Define the functions Vt : Bt 7→ R , for

t = 1, . . . , T as follows:

VT (π) = inf
{γ̃iT∈F (Yi

T×M
i
T ,U

i
T ),1≤i≤n}

E{l(XT , γ̃
1
T (Y 1

T ,M
1
T ), . . . , γ̃nT (Y n

T ,M
n
T ))|ΠT = π}, (32)

and for 1 ≤ t ≤ T − 1,

Vt(π) = inf
{γ̃it∈F (Yi

t×Mi
t,Ui

t ),1≤i≤n}
E
{
l(Xt, γ̃

1
t (Y

1
t ,M

i
t ), . . . , γ̃

n
t (Y n

t ,M
n
t ))+

Vt+1(ηt(π, γ̃
1
t , . . . , γ̃

n
t ,Zt))

∣∣Πt = π
}
, (33)

where ηt is a Bt+1-valued function defined in (26) and Appendix A.

For t = 1, . . . , T and for each π ∈ Bt, an optimal partial control law for controller i is the

minimizing choice of γ̃i in the definition of Vt(π). Let Ψt(π) denote the arg inf of the right hand

side of Vt(π), and Ψi
t denote its i-th component. Then, an optimal control stategy is given by:

ĝit(·, ·, π) = Ψi
t(π). (34)

A. Comparison with Person by Person and Designer Approaches

The common information based approach adopted above differs from the person-by-person

approach and the designer’s approach mentioned in the introduction. In particular, the structural
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result of Theorem 2 cannot be found by the person-by- person approach. If we fix strategies of all

but the ith controller to an arbitrary choice, then it is not necessarily optimal for controller i to

use a strategy of the form in Theorem 2. This is because if controller j’s strategy uses the entire

common information Ct, then controller i, in general, would need to consider the entire common

information to better predict controller j’s actions and hence controller i’s optimal choice of

action may too depend on the entire common information. The use of common information

based approach allowed us to prove that all controllers can jointly use strategies of the form in

Theorem 2 without loss of optimality.

The dynamic programming decomposition of Theorem 3 is simpler than any dynamic pro-

gramming decomposition obtained using the designer’s approach. As described earlier, the

designer’s approach models the decentralized control problem as an open-loop centralized

planning problem in which a designer at each stage chooses control laws git that map (Y i
t ,M

i
t , Ct)

to U i
t , i = 1, . . . , n. On the other hand, the common-information approach developed in this

paper models the decentralized control problem as a closed-loop centralized planning problem in

which a coordinator at each stage chooses the partial control laws γit that map (Y i
t ,M

i
t ) to U i

t ,

i = 1, . . . , n. The space of partial control laws is always smaller than the space of full control

laws; if the common information is non-empty, then they are strictly smaller. Thus, the dynamic

programming decomposition of Theorem 3 is simpler than that obtained by the designer’s approach.

This simplification is best illustrated by the example of Section IV-C1 where all controllers

receive a common observation Y com
t . For this example, we show that our information state (and

hence our dynamic program) reduce to P(Xt|Y com
1:t ), which is identical to the information state

of centralized stochastic control. In contrast, the information state P(Xt, Y
com
1:t ) obtained by the

designer’s approach is much more complicated.

B. Special Cases: The Results

In Section II-B, we described several models of decentralized control problems that are special

cases of the model described in Section II-A. In this section, we state the results of Theorems 2

and 3 for these models.

1) Delayed Sharing Information Structure:

Corollary 1 In the delayed sharing information structure of section II-B1, there exist optimal
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control strategies of the form

U i
t = ĝit(Y

i
t−s+1:t, U

i
t−s+1:t−1,Πt), i = 1, 2, . . . , n, (35)

where

Πt := Pĝ
1:n
1:t−1(Xt,Yt−s+1:t,Ut−s+1:t−1|Ct). (36)

Moreover, optimal control strategies can be obtained by a dynamic program similar to that of

Theorem 3. 2

The above result is analogous to the result in [36].

2) Delayed State Sharing Information Structure:

Corollary 2 In the delayed state sharing information structure of section II-B2, there exist

optimal control strategies of the form

U i
t = ĝit(X

i
t−s+1:t, U

i
t−s+1:t−1,Πt), i = 1, 2, . . . , n, (37)

where

Πt := Pĝ
1:n
1:t−1(Xt−s+1:t,Ut−s+1:t−1|Ct). (38)

Moreover, optimal control strategies can be obtained by a dynamic program similar to that of

Theorem 3. 2

The above result is analogous to the result in [36].

3) Periodic Sharing Information Structure:

Corollary 3 In the periodic sharing information structure of section II-B3, there exist optimal

control strategies of the form

U i
t = ĝit(Y

i
ks+1:t, U

i
ks+1:t−1,Πt), i = 1, 2, . . . , n, ks < t ≤ (k + 1)s, (39)

where

Πt := Pĝ
1:n
1:t−1(Xt,Yks+1:t,Uks+1:t−1|Ct), ks < t ≤ (k + 1)s. (40)

Moreover, optimal control strategies can be obtained by a dynamic program similar to that of

Theorem 3. 2

September 11, 2012 DRAFT



22

The above result gives a finer dynamic programming decomposition that [37]. In [37], the dynamic

programming decomposition is only carried out at the times of information sharing, t = ks,

s = 1, 2, . . . ; and at each step the partial control laws until the next sharing instant are chosen.

In contrast, in the above dynamic program, the partial control laws of each step are chosen

sequentially.

4) Control Sharing Information Structure:

Corollary 4 In the control sharing information structure of section II-B4, there exist optimal

control strategies of the form

U i
t = ĝit(Y

i
1:t,Πt), i = 1, 2, . . . , n, (41)

where

Πt := Pĝ
1:n
1:t−1(Xt,Y1:t|Ct). (42)

Moreover, optimal control strategies can be obtained by a dynamic program similar to that of

Theorem 3. 2

5) No Shared Memory with or without finite local memory:

Corollary 5 In the information structure of Section II-B5, there exist optimal control strategies

of the form

U i
t = ĝit(Y

i
t ,M

i
t ,Πt) (43)

where

Πt = Pĝ
1:n
1:t−1(Xt,Yt,Mt) (44)

Moreover, optimal control strategies can be obtained by a dynamic program similar to that of

Theorem 3. 2

Note that, since the common information is empty, the common information state Πt is now an

unconditional probability. In particular, Πt is a constant random variable and takes a fixed value

that depends only on the choice of past control laws. Therefore, we can define an appropriate

control law g̃it such that ĝit(Y
i
t ,M

i
t ,Πt) = g̃it(Y

i
t ,M

i
t ), with probability 1. Hence, the structural

result of (43) may be simplified to

U i
t = ĝit(Y

i
t ,M

i
t ,Πt) = g̃it(Y

i
t ,M

i
t ).
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This result is redundant since all control laws are of the above form. Nonetheless, Corollary 5

gives a procedure of finding such control laws using the dynamic program of Theorem 3.

The above result is similar to the results in [42] for the case of one controller with finite

memory and to those in [23] for the case of two controllers with finite memories.

IV. SIMPLIFICATIONS AND GENERALIZATIONS

A. Simplification of the Common Information State

Theorems 2 and 3 identify the conditional probability distribution on (Xt,Yt,Mt) given Ct

as the common information state for our problem. In the following lemma, we make the simple

observation that in our model the conditional distribution on (Xt,Yt,Mt) given Ct is completely

determined by the conditional distribution on (Xt,Mt) given Ct.

Lemma 2 For any choice of control laws ĝ1:n1:t−1, define the conditional distribution on Xt,Mt

given Ct as

Πnew
t (x,m) := Pĝ

1:n
1:t−1(Xt = x,Mt = m|Ct),

for all possible realizations (x,m) of (Xt,Mt). Also define Bnewt := ∆(Xt ×Mi
t × . . .×Mn

t ).

Then,

Πnew
t (x,m) =

∑
y

Πt(x,y,m). (45)

Therefore, Πnew
t = χt(Πt), where each component of the Bnewt - valued function χt is determined

by the right hand side of (45). Also,

Πt(x,y,m) = Πnew
t (x,m)P(Yt = y|Xt = x), (46)

where the second term on right hand side of (46) is determined by the fixed distribution of the

observations noises. Therefore, Πt = ζt(Π
new
t ), where each component of the Bt- valued function

ζt is determined by the right hand side of (46). 2

Lemma 2 implies that the results of Theorems 2 and 3 can be written in terms of Πnew
t .

Theorem 4 (Alternative Common Information State) In Problem 1, there exist optimal con-

trol strategies of the form

U i
t = ˆ̂git(Y

i
t ,M

i
t ,Π

new
t ), i = 1, 2, . . . , n, (47)
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where

Πnew
t := P

ˆ̂g1:n1:t−1(Xt,Mt|Ct). (48)

Further, define the functions V new
t : Bnewt 7→ R , for t = 1, . . . , T as follows:

V new
T (πnew) = inf

{γ̃iT∈F (Yi
T×M

i
T ,U

i
T ),1≤i≤n}

E{l(XT , γ̃
1
T (Y 1

T ,M
1
T ), . . . , γ̃nT (Y n

T ,M
n
T ))|ΠT = ζT (πnew)},

(49)

and for 1 ≤ t ≤ T − 1,

V new
t (πnew) = inf

{γ̃it∈F (Yi
t×Mi

t,Ui
t ),1≤i≤n}

E
{
l(Xt, γ̃

1
t (Y

1
t ,M

i
t ), . . . , γ̃

n
t (Y n

t ,M
n
t ))+

V new
t+1 (χt(ηt(Πt, γ̃

1
t , . . . , γ̃

n
t ,Zt)))

∣∣Πt = ζt(π
new)

}
, (50)

where ζt, χt are defined in Lemma 2, and ηt is defined in (26) and Appendix A.

For 1 ≤ t ≤ T and for each πnew, an optimal partial control law for controller i is the

minimizing choice of γ̃i in the definition of V new
t (πnew). 2

Proof: For any πnew ∈ Bnewt and any π ∈ Bt, it is straightforward to establish using a

backward induction argument that V new
t (πnew) = Vt(ζt(π

new)) and Vt(π) = V new
t (χt(π)), where

Vt(·) is the value function from the dynamic program in Theorem 3. The optimality of the new

dynamic program then follows from the optimality of the dynamic program in Theorem 3.

The result of Theorem 4 is conceptually the same as the results in Theorems 2 and 3. Theorem 4

implies that the Corollaries of Section III-B can be restated in terms of new information states

by simply removing Yt from the definition of original information states. For example, the result

of Corollary 1 for delayed sharing information structure is also true when Πt is replaced by

Πnew
t := Pĝ

1:n
1:t−1(Xt,Yt−s+1:t−1,Ut−s+1:t−1|Ct). (51)

This result is simpler than that of [36, Theorem 2].

B. Generalization of the Model

The methodology described in Section III relies on the fact that the shared memory is common

information among all controllers. Since the coordinator in the coordinated system knows only

the common information, any coordination strategy can be mapped to an equivalent control

strategy in the basic model (see Stage 4 of Section III). In some cases, in addition to the shared
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memory, the current observation (or if the current observation is a vector, some components of

it) may also be commonly available to all controllers. The general methodology of Section 2 can

be easily modified to include such cases as well.

Consider the model of Section II-A with the following modifications:

1) In addition to their current local observation, all controllers have a common observation at

time t.

Y com
t = hcomt (Xt, Vt) (52)

where {Vt, t = 1, . . . , T} is a sequence of i.i.d. random variables with probability distribution

QV which is independent of all other primitive random variables.

2) The shared memory Ct at time t is a subset of {Y com
1:t−1,Y1:t−1,U1:t−1}.

3) Each controller selects its action using a control law of the form

U i
t = git(Y

i
t ,M

i
t , Ct, Y

com
t ). (53)

4) After taking the control action at time t, controller i sends a subset Zi
t of {M i

t , Y
i
t , U

i
t , Y

com
t }

that necessarily includes Y com
t . That is,

Y com
t ⊂ Zi

t ⊂ {M i
t , Y

i
t , U

i
t , Y

com
t }.

This implies that the history of common observations is necessarily a part of the shared

memory, that is, Y com
1:t−1 ⊂ Ct.

The rest of the model is same as in Section II-A. In particular, the local memory update satisfies

(7), so the local memory and shared memory at time t+ 1 don’t overlap. The instantaneous cost

is given by l(Xt, Ut) and the objective is to minimize an expected total cost given by (8).

The arguments of Section III are also valid for this model. The observation process in Lemma 1

is now defined as Rt+1 = {Zt, Y
com
t+1 }. The analysis of Section III leads to structural results and

dynamic programming decompositions analogous to Theorems 2 and 3 with Πt now defined as

Πt := Pg
1:n
1:t−1(Xt,Yt,Mt|Ct, Y com

t ). (54)

Using an argument similar to Lemma 2, we can show that the result of Theorem 4 is true for

the above model with Πnew
t defined as

Πnew
t := Pĝ

1:n
1:t−1(Xt,Mt|Ct, Y com

t ). (55)
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C. Examples of the Generalized Model

1) Controllers with Identical Information: Consider the following special case of the above

generalized model.

1) All controllers only make the common observation Y com
t ; controllers have no local

observation or local memory.

2) The shared memory at time t is Ct = Y com
1:t−1. Thus, at time t, all controllers have identical

information given as {Ct, Y com
t } = Y com

1:t .

3) After taking the action at time t, each controller sends Zi
t = Y com

t to the shared memory.

Recall that the coordinator’s prescription Γit in Section III are chosen from the set of functions

from Y it ×Mi
t to U it . Since, in this case Y it =Mi

t = ∅, we interpret the coordinator’s prescription

as prescribed actions. That is, Γit ≡ U i
t . With this interpretation, the common information state

becomes

Πt := Pg
1:n
1:t−1(Xt|Y com

1:t ) (56)

and the dynamic program of Theorem 3 becomes

VT (π) = inf
{uiT∈U

i
T ),1≤i≤n}

E{l(XT , u
1
T , . . . , u

n
T )|ΠT = π}, (57)

and for 1 ≤ t ≤ T − 1,

Vt(π) = inf
{uit∈U i

T ),1≤i≤n}
E
{
l(Xt, u

1
t , . . . , u

n
t ) + Vt+1(ηt(π, u

1
t , . . . , u

n
t , Y

com
t+1 ))

∣∣Πt = π
}
. (58)

Since all the controllers have identical information, the above results correspond to the centralized

dynamic program of Theorem 1 with a single controller choosing all the actions.

2) Coupled subsystems with control sharing information structure: Consider the following

special case of the above generalized model.

1) The state of the system at time t is a (n+1)-dimensional vector Xt = (X1
t , X

2
t , . . . , X

n
t , X

∗
t ),

where X i
t , i = 1, . . . , n corresponds to the local state of subsystem i, and X∗t is a global

state of the system.

2) The state update function is such that the global state evolves according to

X∗t+1 = f ∗t (X∗t ,Ut, N
0
t ),

while the local state of subsystem i evolves according to

X i
t+1 = f it (X

i
t , X

∗
t ,Ut, N

i
t ),
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where {N0
t , t = 1, . . . T}, . . . , {Nn

t , t = 1, . . . T} are mutually independent i.i.d noise

processes that are independent of the initial state, X1 = (X1
1 , X

2
1 , . . . , X

n
1 , X

∗
1 ).

3) At time t, the common observation of all controllers is given by Y com
t = X∗t .

4) At time t, the local observation of controller i is given by Y i
t = X i

t , i = 1, . . . , n.

5) The shared memory at time t is Ct = {X∗1:t−1,U1:t−1}. At each time t, after taking the

action U i
t , controller i sends Zi

t = {X∗t , U i
t} to the shared memory.

The above special case corresponds to the model of coupled subsystems with control sharing

considered in [39], where several applications of this model are also presented. It is shown in

[39] that there is no loss of optimality in restricting attention to controllers with no local memory,

i.e., Mt = ∅. With this additional restriction, the result of Theorems 1 and 2 apply for this model

with Πt defined as

Πt := Pg
1:n
1:t−1(X∗t , X

1
t , . . . , X

n
t |X∗1:t,U1:t−1).

Note that Πt can be evaluated from X∗t and Pg
1:n
1:t−1(X1

t , . . . , X
n
t |X∗1:t,U1:t−1). It is shown in [39]

that X1
t , X

2
t , . . . , X

n
t are conditionally independent given X∗1:t,U1:t−1, hence the joint distribution

Pg
1:n
1:t−1(X1

t , . . . , X
n
t |X∗1:t,U1:t−1) is a product of its marginal distributions.

3) Broadcast information structure: Consider the following special case of the above general-

ized model.

1) The state of the system at time t is a n-dimensional vector Xt = (X1
t , X

2
t , . . . , X

n
t ), where

X i
t , i = 1, . . . , n corresponds to the local state of subsystem i. The first component i = 1 is

special and called the central node. Other components, i = 2, . . . , n, are called peripheral

nodes.

2) The state update function is such that the state of the central node evolves according to

X1
t+1 = f 1

t (X1
t , U

1
t , N

1
t )

while the state of the peripheral nodes evolves according to

X i
t+1 = f it (X

i
t , X

1
t , U

i
t , U

1
t , N

i
t )

where {N i
t , i = 1, 2, . . . n; t = 1, . . . } are noise processes that are independent across time

and independent of each other.

3) At time t, the common observation of all controllers is given by Y com
t = X1

t .
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4) At time t, the local observation of controller i, i > 2, is given by Y i
t = X i

t . Controller 1

does not have any local observations.

5) No controller sends any additional data to the shared memory. Thus, the shared memory

consists of just the history of common observations, i.e., Ct = Y com
1:t−1 = X1

1:t−1.

The above special case corresponds to the model of decentralized systems with broadcast

structure considered in [19]. It is shown in [19] that there is no loss of optimality in restricting

attention to controllers with no local memory, i.e., Mt = ∅. With this additional restriction, the

result of Theorems 1 and 2 apply for this model with Πt defined as

Πt := Pg
1:n
1:t−1(X1

t , . . . , X
n
t |X1

1:t).

Note that Πt can be evaluated from X1
t and Pg

1:n
1:t−1(X2

t , . . . , X
n
t |X1

1:t). It is shown in [19] that

X2
t , . . . , X

n
t are conditionally independent given X1

1:t, hence the joint distribution Pg
1:n
1:t−1(X2

t , . . . , X
n
t |X1

1:t)

is a product of its marginal distributions.

V. EXTENSION TO INFINITE HORIZON

In this Section, we consider the basic model of Section II-A with an infinite time horizon.

Assume that

(i) The state of the system, the observations and the control actions take value in time-invariant

sets X ,Y i,U i, respectively.

(ii) The local memories M i
t and the updates to the shared memory Zi

t take values in time-

invariant sets Mi and Z i respectively.

(iii) The dynamics of the system (equation (1)) and the observation model (equation (2)) are

time-homogeneous. That is, the functions ft and ht in equations (1) and (2) do not vary

with time.

Let the cost of using a strategy g1:n be defined as

J(g1:n) := Eg1:n
[ ∞∑
t=1

βt−1l(Xt,Ut)
]
, (59)

where β ∈ [0, 1) is a discount factor. We can follow the arguments of Section III to formulate

the problem of the coordinated system with an infinite time horizon. As in Section III, the

coordinated system is equivalent to a POMDP. The time-homogeneous nature of the coordinated
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system and its equivalence to a POMDP allows us to use known POMDP results (see [43]) to

conclude the following theorem for the infinite time horizon problem.

Theorem 5 Consider Problem 1 with infinite time horizon and the objective of minimizing the

expected cost given by equation (59). Then, there exists an optimal time-invariant control strategy

of the form:

U i
t = gi(Y i

t ,M
i
t ,Πt), i = 1, 2, . . . , n, (60)

Furthermore, consider the fixed point equation,

V (π) = inf
{γ̃i∈F (Yi×Mi,Ui),1≤i≤n}

E
{
l(Xt, γ̃

1
t (Y

1
t ,M

i
t ), . . . , γ̃

n
t (Y n

t ,M
n
t ))+

βV (ηt(π, γ̃
1, . . . , γ̃n,Zt))

∣∣Πt = π
}
. (61)

Then, for any realization π of Πt, the optimal partial control laws are the choices of γi that

achieve the infimum in the right hand side of (61). 2

All the special cases of our information structure considered in Sections II-B and IV-C can be

extended to infinite horizon problems if the state, observation and actions spaces are time-invariant

and the systems dynamics and observation equations are time homogeneous. The only exception

is the control sharing information structure of section II-B4 where the local memory takes values

in sets that are increasing with time.

The Case of No Shared Memory: As discussed in Section III-B, if the shared memory is always

empty then the common information state defined in Theorem 2 is the unconditional probability

Πt = Pg
1:n
1:t−1(Xt,Yt,Mt). In particular, Πt is a random variable that takes a fixed (constant)

value which depends only on the choice of past control laws. Therefore, for any function git

of Y i
t ,M

i
t ,Πt, there exists a function g̃it of Y i

t ,M
i
t such that g̃it(Y

i
t ,M

i
t ) = git(Y

i
t ,M

i
t ,Πt) with

probability 1. While Theorem 5 establishes optimality of a time-invariant git, such time-invariance

may not hold for the corresponding g̃it. Similar observations were reported in [25].

VI. DISCUSSION AND CONCLUSIONS

In centralized stochastic control, the controller’s belief on the current state of the system

plays a fundamental role for predicting future costs. If the control strategy for the future is

fixed as a function of future beliefs, then the current belief is a sufficient statistic for future
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costs under any choice of current action. Hence, the optimal action at the current time is only a

function of current belief on the state. In decentralized problems where different controllers have

different information, using a controller’s belief on the state of the system presents two main

difficulties: (i) Since the costs depend both on system state as well as other controllers’ actions

any prediction of future costs must involve a belief on system state as well as some means

of predicting other controllers’ actions. (ii) Secondly, since different controllers have different

information, the beliefs formed by each controller and their predictions of future costs cannot be

expected to be consistent.

The approach we adopted in this paper tries to address these difficulties by using the fact that

sharing of data among controllers creates common knowledge among the controllers. Beliefs

based on this common knowledge are necessarily consistent among all controllers and can serve

as a consistent sufficient statistic. Moreover, while controllers cannot accurately predict each

other’s control actions, they can know, for the observed realization of common information, the

exact mapping used by each controller to map its local information to control action. These

considerations suggest that common information based beliefs and partial control laws should

play an important role in a general theory of decentralized stochastic control problems. The use

of a fictitious coordinator allows us to make these considerations mathematically precise. Indeed,

the coordinator’s beliefs are based on common information and the coordinator’s decision are

the partial control laws. The results of the paper then follow by observing that the coordinator’s

problem can be viewed as a POMDP by identifying a new state that includes both the state of

the dynamic system as well as the local information of the controllers.

The specific model of shared and local memory update that we assumed is crucial for connecting

the coordinator’s problem to POMDPs and centralized stochastic control. A key assumption in

centralized stochastic control is perfect recall, that is, the information obtained at any time is

remembered at all future times. This is essential for the update of the beliefs in POMDPs. Our

assumption that the shared memory is increasing in time ensures that the perfect recall property

is true for the coordinator’s problem. If the shared memory did not have perfect recall (that is, if

some past contents were lost over time), then the update of common information state in (26)

would not hold and the results of Theorems 2 and 3 would not be true.

Another key factor in our result is that St := {Xt,Yt,Mt} serves as a state for the coordinator’s

problem. If the system state, observations and local memories take value in a time-invariant
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space, we have a state for the coordinator’s problem which takes value in a time-invariant space.

Hence, the common information state is a belief on a time-invariant space. The local memory

update in (7) ensures that St is a state. If local memory update depended on shared memory as

well, that is, if (7) were replaced by

M i
t+1 ⊂ {Ct,M i

t , Y
i
t , U

i
t},

then St would no longer suffice as a state for the coordinator. In particular, the state update

equations in Lemma 1 would no longer hold. The only recourse then would be to include Ct

as a part of the state which would necessarily mean that the state space keeps increasing with

time. This is undesirable not only because large state spaces imply increased complexity, but the

increasing size of state spaces also makes extensions of finite horizon results to infinite horizon

problems conceptually difficult.

The connection between the coordinator’s problem and POMDPs can be used for computational

purposes as well. The dynamic program of Theorem 3 is essentially a POMDP dynamic program.

In particular, just as in POMDP, the value-functions are piecewise linear and concave in πt. This

characterization of value functions is utilized to find computationally efficient algorithms for

POMDPs. Such algorithmic solutions to general POMDPs are well-studied and can be employed

here. We refer the reader to [44] and references therein for a review of algorithms to solve

POMDPs.

While our results apply to a broad class of models, it would be worthwhile to identify

special cases where the specific model features can be exploited to simplify our structural result.

Examples of such simplification appear in [19], [39]. A common theme in many centralized

dynamic programming solutions is to identify a key property of the value functions and use

it to characterize the optimal decisions. Since our results also provide a dynamic program, an

important avenue for future work would be to identify cases where properties of value functions

can be analyzed to deduce a solution or to reduce the computational burden of finding the

solution.

Our approach in this paper illustrates that common information provides a common conceptual

framework for several decentralized stochastic control problems. In our model, we explicitly

included a shared memory which naturally served the purpose of common information among

the controllers. More generally, we can define common information for any sequential decision-
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making problem and then address the problem from the perspective of a coordinator who knows

the common information. Such a common information based approach for general sequential

decision-making problems is presented in [40].
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APPENDIX A

THE UPDATE FUNCTION ηt OF THE COORDINATOR’S INFORMATION STATE

Consider a realization ct+1 of the shared memory Ct+1 at time t + 1. Let (γ1:t) be the

corresponding realization of the coordinator’s prescriptions until time t. We assume the realization

(ct+1, π1:t, γ1:t) to be of non-zero probability. Then, the realization πt+1 of Πt+1 is given by

πt+1(s) = P{St+1 = s|ct+1, γ1:t}. (62)

Use Lemma 1 to simplify the above expression as∑
st,w0

t ,wt+1

1s(f̃t(st, γt, w
0
t ,wt+1)) · P{W 0

t = w0
t } · P{Wt+1 = wt+1} · P{St = st|ct+1, γ1:t}.

(63)

Since ct+1 = (ct, zt), write the last term of (63) as

P{St = st|ct, zt, γ1:t} =
P{St = st,Zt = zt|ct, γ1:t}∑
s′ P{St = s′,Zt = zt|ct, γ1:t}

. (64)

Use Lemma 1 and the sequential order in which the system variables are generated to write

the numerator as

P{St = st,Zt = zt|ct, γ1:t} = 1h̃t(st,γt)(zt) · P{St = st|ct, γ1:t} (65)

= 1h̃t(st,γt)(zt) · πt(st). (66)

September 11, 2012 DRAFT



35

where we dropped γt from conditioning in (65) since under the given coordinator’s strategy, it is

a function of the rest of the terms in the conditioning. Substitute (66), (64), and (63) into (62),

to get

πt+1(s) = ηst (πt, γt, zt),

where ηst (·) is given by (62), (63), (64), and (66). ηt(·) is the vector (ηst (·))s∈S .

APPENDIX B

PROOF OF PROPOSITION 3

(a) For any given control strategy g1:n in the basic model, define a coordinated strategy d for

the coordinated system as

dt(Ct) =
(
g1t (·, ·, Ct), . . . , gn(·, ·, Ct)

)
. (67)

Consider Problems 1 and 2. Use control strategy g1:n in Problem 1 and coordination strategy

d given by (67) in Problem 2. Fix a specific realization of the primitive random variables

{X1,W
j
t , t = 1, . . . , T, j = 0, 1, . . . , n} in the two problems. Equation (2) implies that the

realization of Y1 will be the same in the two problems. Then, the choice of d according to (67)

implies that the realization of the control actions U1 will be the same in the two problems.

This implies that the realization of the next state X2 and the memories M2, C2 will be the

same in the two problems. Proceeding in a similar manner, it is clear that the choice of d

according to (67) implies that the realization of the state {Xt; t = 1, . . . , T}, the observations

{Yt; t = 1, . . . , T}, the control actions {Ut; t = 1, . . . , T} and the memories {Mt; t = 1, . . . , T}

and {Ct; t = 1, . . . , T} are all identical in Problem 1 and 2. Thus, the total expected cost under

g1:n in Problem 1 is same as the total expected cost under the coordination strategy given by (67)

in Problem 2. That is, J(g1:n) = Ĵ(d).

(b) The second part of Proposition 3 follows from similar arguments as above.

APPENDIX C

EQUIVALENCE BETWEEN THE MODEL OF THIS PAPER AND THE MODEL OF [1]

We refer to the model of this paper as the PHS (partial history sharing) model and the model

of [1] as the CO (common observation) model. First, we describe the CO model and then show
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the both models are equivalent by showing that the PHS model is a special case of CO model

and vice versa.

The CO Model

The following model was presented in [1]; we use a slightly different notation so that the

notation matches with that of our paper.

Consider a system with n controllers. Let Xt denote the state of the system, Zt denote the

common observation of all controllers, Y i
t denote the private observation of controller i, M i

t the

contents of the memory of controller i, and U i
t the control action of controller i, i = 1, . . . , n.

The system dynamics and observation equations are given by

Xt+1 = ft(Xt, U
1:n
t ,W 0

t ), (68)

Y i
t = hit(Xt, U

1:i−1
t ,W i

t ), i = 1, . . . , n, (69)

Zt = ct(Xt, U
1:n
t−1, Qt), (70)

where {X1, Qt,W
i
t , i = 0, . . . , n, t = 1, . . . , T} are independent random variables.

At time t, controller i generates a control action and updates its memory as follows:

U i
t = git(Z1:t, Y

i
t ,M

i
t−1), (71)

M i
t = rit(Z1:t, Y

i
t ,M

i
t−1). (72)

At each time an instantaneous cost lt(Xt, U
1:n
t ) is incurred. The system objective is to choose

a control strategy g1:n1:T and a memory update strategy r1:n1:T to minimize a total expected cost.

The PHS model is a special case of CO model

Consider the PHS model described in Sec II-A of the paper and define

X̃t = (Xt, Y
1:n
t ,M1:n

t , Z1:n
t−1),

Ũ i
t = U i

t , i = 1, . . . , n

Ỹ i
t = (Y i

t ,M
i
t ), i = 1, . . . , n

Z̃t = Z1:n
t−1,

M̃ i
t = ∅, i = 1, . . . , n.
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Define the cost function

l̃t(X̃t, Ũ
1:n
t ) = lt(Xt, U

1:n
t ).

It is easy to verify that the model (X̃t, Ũ
1:n
t , Ỹ 1:n

t , M̃1:n
t , Z̃t) defined above is a special case of

CO model.

The CO model is a special case of PHS model

In the CO model, the local observations Y i
t of controller i depends on the control action U1:i−1

t .

This feature is not present in PHS model. Nonetheless, we can show that CO model is a special

case of the PHS model by splitting time and assuming that in the PHS model only one controller

acts at each time.

Define the following system variables for τ = 1, . . . , nT . For ease of notation, when tn <

τ ≤ (t+ 1)n, we will write τ as tn+ i. Thus, the system variables are defined for t = 1, . . . , T

and i = 1, . . . , n:

X̃tn+1 = (Xt, U
1:n
t−1,M

1:n
t−1), X̃tn+i = (Xt, U

i:i−1
t ,M1:i−1

t ,M i:n
t−1), i = 2, . . . , n,

Z̃tn+1 = Zt, Z̃tn+i = ∅, i = 2, . . . , n,

Ỹ i
tn+j =


(Y 1

t ,M
1
t−1, Zt), if i = j = 1,

(Y i
t ,M

i
t−1) if i = j 6= 1,

∅, otherwise;

i, j = 1, . . . , n

Ũ i
tn+j =

(U i
t ,M

i
t ), if i = j,

∅, otherwise;
i, j = 1, . . . , n

M̃ i
tn+j = ∅, j = 1, . . . , n.

Define the cost function as:

l̃tn+i(X̃tn+i, Ũ
1:n
tn+i) =

lt(Xt, U
1:n
t ), if i = n,

0, otherwise.

It is easy to verify that the model (X̃τ , Ũ
1:n
τ , Ỹ 1:n

τ , M̃1:n
τ , Z̃τ ) defined above is a special case

of PHS model.
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